Improving the inference performance of LLM with code

*Fei Ding L*

Abstract

Large Language Models (LLMs) have shown exceptional generative abilities in various
natural language and generation tasks. Large language models (LLMs) have demonstrated
remarkable performance on a variety of natural language tasks based on just a few examples
of natural language instructions, reducing the need for extensive feature engineering. How-
ever, LLM is relatively weaker in reasoning and problem-solving abilities. We propose a new
construction that solves the problem of insufficient logical mathematics and logical ability.
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1 Introduction

With the remarkable progress made by large language models such as GPT-4, ChatGPT,
Google Gemini, Llama-2 (Touvron et al., 2023), and Mistral (Jiang et al., 2023) in NLP
research, machines are now capable of performing a wide range of language tasks that were
previously believed to be exclusive to humans (OpenAl, 2023; Brown et al., 2020; Zhao
et al., 2023). Performs well on language tasks such as Hellaswag (Zellers et al., 2019), Wino-
grande (Sakaguchi et al., 2021), PIQA (Bisk et al., 2020) and ARC-Easy . However, Logical
reasoning is a critical component of intelligence and is essential for many practical appli-
cations, including question-answering systems (Khashabi, 2019) and conversational agents
(Beygi et al., 2022).

Several datasets have been proposed such as (Clark et al., 2020; Tian et al., 2021; Joshi
et al., 2020; Saeed et al., 2021), LogiQA (Liu et al., 2021) , ReClor (Yu et al., 2020)
, FOLIO (Han et al., 2022) and ProntoQA (Saparov and He, 2023) that demonstrate
the relatively weak ability of these LLMs to reason logically over natural language text.

Large language models also perform poorly in mathematics and code such as GSM8K (Cobbe
et al., 2021) with maj@8 , MATH (Hendrycks et al., 2021) with maj@4 , Humaneval (Chen
et al., 2021) and MBPP (Austin et al., 2021)

We delved into D. Kahneman'’s theory of thinking fast and slow (Kahneman, 2011), and we
propose a new simple AGI architecture (called DingFei model, for Artificial General Intelli-
gence) where divide AGI into emotional brain, rational brain, and bottom brain. The emo-
tional brain reacts through intuition, and the modified LLM can serve as an emotional brain.
The rational brain is responsible for logical reasoning. The bottom brain is the underlying
code that supports the operation of the emotional brain and the rational brain, as well as
rules written in code. The collaboration of three brains solved the problem mentioned ear-
lier. We also introduced the concept of skills and scratch paper, ensuring 100% accuracy.
With the addition of autonomous learning, we achieved Artificial General Intelligence 1.0.

1.1 objective

We propose the DingFei model to achieve Artificial General Intelligence 1.0. AGI needs
to possess many capabilities that would naturally be included in a notion of human in-
telligence. Examples of these capabilities are generalizability, adaptability, robustness, ex-
plainability, causal analysis, abstraction, common sense reasoning, ethical reasoning (Rossi
and Mattei, 2019), as well as a complex and seamless integration of learning and reasoning
supported by both implicit and explicit knowledge (Littman et al., 2021). We delve into the
mechanisms that enable humans to possess these capabilities, which helps us understand
how to imbue AT systems with these competencies. (Rossi and Loreggia, 2019; Booch et al.,
2021).

2 The emotional brain

The emotional brain is primarily driven by intuition over careful consideration, providing
quick responses to straightforward questions. Intuition is often generated after reading a
sufficient amount of data. They are tightly linked to the availability of huge datasets and
computational power (Marcus, 2020). However, these answers can occasionally be incorrect
due to unconscious biases or their reliance on heuristics and other shortcuts (Gigerenzer and
Brighton, 2009), and typically lack explanations.



3 The rational brain

Intuition often fabricates false facts (i.e. hallucination). But logical reasoning requires pre-
cise answers, and this is when the rational brain needs to be used.

3.1 Training data

Textbooks and a large number of related exercises from kindergarten, elementary school,
middle school, Senior high school, and University.

3.2 Training

How to train the rational brain? For example, mathematics. Let the LLM read textbooks,
and then summarize skills for each knowledge point . Then Use the skills learned to answer
practice questions. If they are incorrect, correct and improve the skill. A skill is a set of
knowledge, rules, and operational flowcharts. Then the skill is converted into executable
code and stored in the rational brain, ready to be used when needed. Connect relevant skills
with each other.

4 Scratch paper

Psychological research reveals a fascinating insight: even children and adults can have their
problem-solving prowess significantly dampened by irrelevant information (Hoyer et al.,
1979; Pasolunghi et al., 1999; Marzocchi et al., 2002) . Similarly, We conducted a large num-
ber of experiments that demonstrated the performance of large language models can be af-
fected by irrelevant context, leading to incorrect results. To solve this problem, we proposed
the concept of draft paper, ensuring a success rate of 100% when dealing with complex is-
sues. I will show the details later.

5 The bottom brain

In the bottom brain, human beings can set the behavioral norms for AI.The bottom brain
runs directly on the hardware and provides support for both the rational brain and the emo-
tional brain. I will introduce more details about the rational brain and the bottom brain in
the future.

6 Effect

6.1 Prediction

For example, a math problem.

CHATGPT:

chatgpt at Figure 1.Everything was correct until it came to multiplication at the end

Although ChatGPT was trained with a large amount of mathematical computation
data to improve the accuracy of mathematical computations, it obviously cannot write
out the correct answer to a three-digit multiplication problem based on intuition alone.



. You

What is the volume of a cuboid with side lengths of 936, 332, and 741?

ChatGPT
To find the volume of a cuboid, you multiply together the lengths of its three sides. So for this cuboid:

Volume = Length x Width x Height

Given the side lengths:
Length =936

Width = 332

Height =741

You can calculate the volume as follows:

Volume =936 * 332 * 741

Volume = 244,379,016 cubic units

Figure 1: chatgpt

MISTRAL:
Mistral at the top of Figure 2. Similarly, Mistral also did a lot of optimization in mathemat-
ics, but there was an error in the calculation of multiplication.
THE DINGFEI MODE:

The DingFei model at the bottom of Figure 2. We used cross-computation between the
rational and emotional brains to avoid giving an answer directly through intuition alone,
thereby ensuring the precision of the results . Here are the details:

At line 1 | the rational brain was tasked with thinking, using the skill ” formula for the
volume of a rectangular prism,” to arrive at line 1.

At line 2 | therational brain was tasked with thinking, using the skill ” Associative Prop-
erty of Multiplication”, to arrive at line 3.

At line 3 , uses the scratch paper to calculate 936 x 332 and obtains the result in line 4.

At line 4 | the rational brain was tasked with thinking, using the skill ” Multiplication of
large numbers”, to arrive at line 5.

At line 5 | uses the scratch paper to calculate each multiplication separately and obtains
the result in line 6.

At line 6 | the rational brain was tasked with thinking, using the skill ” Adding Multiple
Numbers”, to arrive at line 7.



What is the volume of a cuboid with side lengths of 936, 332, and 7417

The volume of a cuboid is calculated by multiplying its length, width, and height. In this case, the

side lengths are 936, 332, and 741 units.
So, the volume would be:

Volume = Length * Width * Height
=936 * 332 * 741

Let's calculate that:

Volume = 231,897,856 cubic units

So, the volume of the cuboid is 231,897,856 cubic units.

What is the volume of a cuboid with side lengths of 936, 332, and 7417

]

Given the side lengths of the cuboid are 936, 332, and 741, you would calculate the volume (V) as
follows:

= length x width x height
936 x 332 x 741
= (936 x 332) x 741
@ =310,752 x 741
(5) = (300,000 x 741) + (10,000 x 741) + (700 x 741) + (50 x 741) + (2 x 741)
@ = 222,300,000 + 7,410,000 + 518,700 + 37,050 + 1,482
@ = 229,710,000 + 518,700 + 37,050 + 1,482
= 230,228,700 + 37,050 + 1,482
= 230,265,750 + 1,482
= 230,267,232

\
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So, the volume of the cuboid is 230,267,232 cubic units.

Figure 2: Top: mistral, Bottom: DingFei model

7 Conclusion

The DingFei model can achieve 100% accuracy in complex problems.Due to insufficient
computational power , we have only trained part of the mathematics textbooks, and the
accuracy rate of doing exercises can reach 100%. In the future, we will continue to train
mathematics and other discipline . We expect the accuracy rate to remain at 100%.
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