Pathogenic antibodies induced by spike proteins of COVID-19 and SARS-CoV viruses
Abstract
This study, using a virus-free mouse model, explores the pathogenic roles of certain antibodies specific to the spike proteins of highly pathogenic coronaviruses such as the COVID-19 and the SARS-CoV viruses. Our data showed that these pathogenic antibodies, through a mechanism of Antibody Dependent Auto-Attack (ADAA), target and bind to host vulnerable cells or tissues such as damaged lung epithelium cells, initiate a self-attack immune response, and lead to serious conditions including ARDS, cytokine release, and death. Moreover, the pathogenic antibodies also induced inflammation and hemorrhage of the kidneys, brain, and heart. Furthermore, the pathogenic antibodies can bind to unmatured fetal tissues and cause abortions, postpartum labors, still births, and neonatal deaths of pregnant mice. Novel clinical interventions, through disrupting the host-binding of these pathogenic antibodies, can be developed to fight the COVID-19 pandemic. In addition, the new concept of ADAA explored by this study may be applicable to other infectious diseases, such as the highly pathogenic influenza infections. It should be noted that the majority of anti-spike antibodies are non-pathogenic, as only 2 of 7 monoclonal antibodies tested showed significant pathogenic effects.