Incremental metabolic benefits from cryoablation for paroxysmal atrial fibrillation: insights from metabolomic profiling

Preprint | 
10.55415/deep-2023-0063.v1
This is not the most recent version. There is anewer versionof this content available.
Mengjie Xie#
Department of Cardiology, Renmin Hospital of Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Hubei Key Laboratory of Cardiology; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, P.R. China.
Department of Cardiology, Renmin Hospital of Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Hubei Key Laboratory of Cardiology; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, P.R. China.
Fuding Guo#
Department of Cardiology, Renmin Hospital of Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Hubei Key Laboratory of Cardiology; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, P.R. China.
Department of Cardiology, Renmin Hospital of Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Hubei Key Laboratory of Cardiology; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, P.R. China.
Jun Wang#
Department of Cardiology, Renmin Hospital of Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Hubei Key Laboratory of Cardiology; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, P.R. China.
Department of Cardiology, Renmin Hospital of Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Hubei Key Laboratory of Cardiology; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, P.R. China.
Yijun Wang
Department of Cardiology, Renmin Hospital of Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Hubei Key Laboratory of Cardiology; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, P.R. China.
Department of Cardiology, Renmin Hospital of Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Hubei Key Laboratory of Cardiology; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, P.R. China.
Zhihao Liu
Department of Cardiology, Renmin Hospital of Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Hubei Key Laboratory of Cardiology; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, P.R. China.
Department of Cardiology, Renmin Hospital of Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Hubei Key Laboratory of Cardiology; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, P.R. China.
Jing Xie
Department of Cardiology, Renmin Hospital of Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Hubei Key Laboratory of Cardiology; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, P.R. China.
Department of Cardiology, Renmin Hospital of Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Hubei Key Laboratory of Cardiology; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, P.R. China.
Zhuo Wang
Department of Cardiology, Renmin Hospital of Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Hubei Key Laboratory of Cardiology; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, P.R. China.
Department of Cardiology, Renmin Hospital of Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Hubei Key Laboratory of Cardiology; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, P.R. China.
Songyun Wang
Department of Cardiology, Renmin Hospital of Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Hubei Key Laboratory of Cardiology; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, P.R. China.
Department of Cardiology, Renmin Hospital of Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Hubei Key Laboratory of Cardiology; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, P.R. China.
Liping Zhou
Department of Cardiology, Renmin Hospital of Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Hubei Key Laboratory of Cardiology; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, P.R. China.
Department of Cardiology, Renmin Hospital of Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Hubei Key Laboratory of Cardiology; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, P.R. China.
Yueyi Wang
Department of Cardiology, Renmin Hospital of Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Hubei Key Laboratory of Cardiology; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, P.R. China.
Department of Cardiology, Renmin Hospital of Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Hubei Key Laboratory of Cardiology; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, P.R. China.
Yueyi Wang
Department of Cardiology, Renmin Hospital of Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Hubei Key Laboratory of Cardiology; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, P.R. China.
Department of Cardiology, Renmin Hospital of Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Hubei Key Laboratory of Cardiology; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, P.R. China.
Hong Jiang*
Department of Cardiology, Renmin Hospital of Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Hubei Key Laboratory of Cardiology; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, P.R. China.
Department of Cardiology, Renmin Hospital of Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Hubei Key Laboratory of Cardiology; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, P.R. China.
Lilei Yu*
Department of Cardiology, Renmin Hospital of Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Hubei Key Laboratory of Cardiology; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, P.R. China.
Department of Cardiology, Renmin Hospital of Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Hubei Key Laboratory of Cardiology; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, P.R. China.

# contributed equally to this work, * Corresponding author


Abstract

Background: Cryoablation (CRYO) is a novel catheter ablation technique for atrial fibrillation (AF). However, uncertainty persists regarding the role of metabolic modifications associated with CRYO ablation. This study aimed to explore whether CRYO influences the metabolic signature, which has never been investigated before. 


Methods: Paired serum samples of AF patients (n=10) were collected before and 24h after CRYO. Untargeted metabolomics analysis was conducted by using LC-MS system. Univariate and multivariate analyses were applied to identify differential metabolites. Pathway enrichment and Pearson correlation analysis were performed to reveal the disturbed metabolic pathways and potential interactions. 


Results: Seventy-nine metabolites revealed a significant change from baseline to 24h after CRYO. Pathway analysis revealed that disturbed metabolites were enriched in unsaturated fatty acid biosynthesis, retrograde endocannabinoid signaling and neuroactive ligand-receptor interactions. Pearson correlation analysis showed a strong correlation between differential metabolites, biochemical markers, and clinical indicators. 


Conclusions: Our results demonstrated that CRYO induces systemic changes in the serum metabolome of paroxysmal AF patients and provides potential metabolic benefits that could contribute to an enhanced understanding of the pathophysiology and metabolic mechanisms involved in catheter ablation.

Keywords
Subject Area
Version History
  • 30 Nov 2023 09:11 Version 1
Scores
 3.5
Rapid Rating Times: 1
· Level of Quality: 4
· Level of Repeatability: 3
· Level of Innovation: 4
· Level of Impact: 3

*Each rating ranges from 0-5

Rapid Rating
Your professional field is different from the direction of this article. Go Settings!
  • Level of Quality
    Is the publication of relevance for the academic community and does it provide important insights? Is the language correct and easy to understand for an academic in the field? Are the figures well displayed and captions properly described? Is the article systematically and logically organized?
    0.0
  • Level of Repeatability
    Is the hypothesis clearly formulated? Is the argumentation stringent? Are the data sound, well-controlled and statistically significant? Is the interpretation balanced and supported by the data? Are appropriate and state-of-the-art methods used?
    0.0
  • Level of Innovation
    Does the work represent a novel approach or new findings in comparison with other publications in the field?
    0.0
  • Level of Impact
    Does the work have potential huge impact to the related research area?
    0.0
Submit

我们使用 cookie 将您与其他用户区分开来, 并在我们的网站上为您提供更好的体验。

关闭此消息以接受 cookie 或了解如何管理您的 cookie 设置。

了解更多关于我们的隐私声明..

goTop